
Extract parameter simulations from the joint precision matrix
Source:R/gather-spread.R
gather_sims.Rdspread_sims() returns a wide-format data frame. gather_sims() returns a
long-format data frame. The format matches the format in the tidybayes
spread_draws() and gather_draws() functions.
Arguments
- object
Output from
sdmTMB().- nsim
The number of simulation draws.
Value
A data frame. gather_sims() returns a long-format data frame:
.iteration: the sample ID.variable: the parameter name.value: the parameter sample value
spread_sims() returns a wide-format data frame:
.iteration: the sample IDcolumns for each parameter with a sample per row
Examples
m <- sdmTMB(density ~ depth_scaled,
data = pcod_2011, mesh = pcod_mesh_2011, family = tweedie())
head(spread_sims(m, nsim = 10))
#> .iteration X.Intercept. depth_scaled range phi tweedie_p sigma_O
#> 1 1 2.190191 -0.5833938 30.48107 16.16591 1.566084 2.456067
#> 2 2 2.603178 -0.7394658 17.31691 16.46800 1.598118 3.104577
#> 3 3 2.688482 -1.0642911 36.94842 15.06568 1.607437 1.908867
#> 4 4 2.808461 -0.6082838 27.88899 15.28096 1.600632 2.433739
#> 5 5 2.945574 -0.6886035 39.42264 15.79456 1.595986 2.384444
#> 6 6 3.218579 -0.7272557 54.07811 15.34240 1.613165 1.701300
head(gather_sims(m, nsim = 10))
#> .iteration .variable .value
#> 1 1 X.Intercept. 3.421495
#> 2 2 X.Intercept. 2.847998
#> 3 3 X.Intercept. 2.929768
#> 4 4 X.Intercept. 2.815933
#> 5 5 X.Intercept. 2.103157
#> 6 6 X.Intercept. 2.806020
samps <- gather_sims(m, nsim = 1000)
if (require("ggplot2", quietly = TRUE)) {
ggplot(samps, aes(.value)) + geom_histogram() +
facet_wrap(~.variable, scales = "free_x")
}
#> `stat_bin()` using `bins = 30`. Pick better value `binwidth`.