Skip to contents

Make predictions from an sdmTMB model; can predict on the original or new data.

Usage

# S3 method for class 'sdmTMB'
predict(
  object,
  newdata = NULL,
  type = c("link", "response"),
  se_fit = FALSE,
  re_form = NULL,
  re_form_iid = NULL,
  nsim = 0,
  sims_var = "est",
  model = c(NA, 1, 2),
  offset = NULL,
  mcmc_samples = NULL,
  return_tmb_object = FALSE,
  return_tmb_report = FALSE,
  return_tmb_data = FALSE,
  ...
)

Arguments

object

A model fitted with sdmTMB().

newdata

A data frame to make predictions on. This should be a data frame with the same predictor columns as in the fitted data and a time column (if this is a spatiotemporal model) with the same name as in the fitted data.

type

Should the est column be in link (default) or response space?

se_fit

Should standard errors on predictions be calculated? Warning: can be slow for large datasets or high-resolution projections when random fields are included. For faster uncertainty estimation, either use re_form = NA to exclude random fields or use the nsim argument to simulate from the joint precision matrix.

re_form

NULL to include all spatial/spatiotemporal random fields in predictions. ~0 or NA for population-level predictions (predictions from fixed effects only, marginalizing over random fields). Often used with se_fit = TRUE to visualize marginal effects. Does not affect get_index() calculations.

re_form_iid

NULL to specify including all random intercepts in the predictions. ~0 or NA for population-level predictions. No other options (e.g., some but not all random intercepts) are implemented yet. Only affects predictions with newdata. This does affects get_index().

nsim

If > 0, simulate from the joint precision matrix with nsim draws. Returns a matrix of nrow(newdata) by nsim with each column representing one draw of the linear predictor (in link space). Simulating from the joint precision matrix accounts for uncertainty in both fixed and random effects. Use this to derive uncertainty on predictions (e.g., apply(x, 1, sd)) or propagate uncertainty to derived quantities. This is the fastest way to characterize spatial uncertainty with sdmTMB.

sims_var

Experimental: Which TMB reported variable from the model should be extracted from the joint precision matrix simulation draws? Defaults to link-space predictions. Options include: "omega_s", "zeta_s", "epsilon_st", and "est_rf" (as described below). Other options will be passed verbatim.

model

Which component to predict from delta/hurdle models when nsim > 0 or mcmc_samples is supplied. NA (default) returns the combined prediction from both components; 1 returns the binomial component only; 2 returns the positive component only. Predictions are on the link or response scale depending on type. For regular predictions (without simulation), both components are returned. See the delta-model vignette.

offset

A numeric vector of optional offset values. If left at default NULL, the offset is implicitly left at 0.

mcmc_samples

See extract_mcmc() in the sdmTMBextra package for more details and the Bayesian vignette. If specified, the predict function will return a matrix of a similar form as if nsim > 0 but representing Bayesian posterior samples from the Stan model.

return_tmb_object

Logical. If TRUE, will include the TMB object in a list format output. Necessary for the get_index() or get_cog() functions.

return_tmb_report

Logical: return the output from the TMB report? For regular prediction, this is all the reported variables at the MLE parameter values. For nsim > 0 or when mcmc_samples is supplied, this is a list where each element is a sample and the contents of each element is the output of the report for that sample.

return_tmb_data

Logical: return formatted data for TMB? Used internally.

...

Not implemented.

Value

If return_tmb_object = FALSE (and nsim = 0 and mcmc_samples = NULL):

A data frame:

  • est: Estimate in link space (everything included)

  • est_non_rf: Estimate from everything except random fields (fixed effects, random intercepts, time-varying effects, etc.)

  • est_rf: Estimate from all random fields combined

  • omega_s: Spatial random field (models consistent spatial patterns)

  • zeta_s: Spatially varying coefficient field (models how effects vary across space)

  • epsilon_st: Spatiotemporal random field (models spatial patterns that vary over time)

If return_tmb_object = TRUE (and nsim = 0 and mcmc_samples = NULL):

A list:

  • data: The data frame described above

  • report: The TMB report on parameter values

  • obj: The TMB object returned from the prediction run

  • fit_obj: The original TMB model object

In this case, you likely only need the data element as an end user. The other elements are included for other functions.

If nsim > 0 or mcmc_samples is not NULL:

A matrix:

  • Columns represent samples

  • Rows represent predictions with one row per row of newdata

Examples


d <- pcod_2011
mesh <- make_mesh(d, c("X", "Y"), cutoff = 30) # a coarse mesh for example speed
m <- sdmTMB(
 data = d, formula = density ~ 0 + as.factor(year) + depth_scaled + depth_scaled2,
 time = "year", mesh = mesh, family = tweedie(link = "log")
)

# Predictions at original data locations -------------------------------

predictions <- predict(m)
head(predictions)
#> # A tibble: 6 × 17
#>    year     X     Y depth density present   lat   lon depth_mean depth_sd
#>   <int> <dbl> <dbl> <dbl>   <dbl>   <dbl> <dbl> <dbl>      <dbl>    <dbl>
#> 1  2011  435. 5718.   241    245.       1  51.6 -130.       5.16    0.445
#> 2  2011  487. 5719.    52      0        0  51.6 -129.       5.16    0.445
#> 3  2011  490. 5717.    47      0        0  51.6 -129.       5.16    0.445
#> 4  2011  545. 5717.   157      0        0  51.6 -128.       5.16    0.445
#> 5  2011  404. 5720.   398      0        0  51.6 -130.       5.16    0.445
#> 6  2011  420. 5721.   486      0        0  51.6 -130.       5.16    0.445
#> # ℹ 7 more variables: depth_scaled <dbl>, depth_scaled2 <dbl>, est <dbl>,
#> #   est_non_rf <dbl>, est_rf <dbl>, omega_s <dbl>, epsilon_st <dbl>

predictions$resids <- residuals(m) # randomized quantile residuals

library(ggplot2)
ggplot(predictions, aes(X, Y, col = resids)) + scale_colour_gradient2() +
  geom_point() + facet_wrap(~year)

hist(predictions$resids)

qqnorm(predictions$resids);abline(a = 0, b = 1)


# Predictions onto new data --------------------------------------------

qcs_grid_2011 <- replicate_df(qcs_grid, "year", unique(pcod_2011$year))
predictions <- predict(m, newdata = qcs_grid_2011)

# \donttest{
# A short function for plotting our predictions:
plot_map <- function(dat, column = est) {
  ggplot(dat, aes(X, Y, fill = {{ column }})) +
    geom_raster() +
    facet_wrap(~year) +
    coord_fixed()
}

plot_map(predictions, exp(est)) +
  scale_fill_viridis_c(trans = "sqrt") +
  ggtitle("Prediction (fixed effects + all random effects)")


plot_map(predictions, exp(est_non_rf)) +
  ggtitle("Prediction (fixed effects and any time-varying effects)") +
  scale_fill_viridis_c(trans = "sqrt")


plot_map(predictions, est_rf) +
  ggtitle("All random field estimates") +
  scale_fill_gradient2()


plot_map(predictions, omega_s) +
  ggtitle("Spatial random effects only") +
  scale_fill_gradient2()


plot_map(predictions, epsilon_st) +
  ggtitle("Spatiotemporal random effects only") +
  scale_fill_gradient2()


# Visualizing a marginal effect ----------------------------------------

# See the visreg package or the ggeffects::ggeffect() or
# ggeffects::ggpredict() functions
# To do this manually:

nd <- data.frame(depth_scaled =
  seq(min(d$depth_scaled), max(d$depth_scaled), length.out = 100))
nd$depth_scaled2 <- nd$depth_scaled^2

# Because this is a spatiotemporal model, you'll need at least one time
# element. If time isn't also a fixed effect then it doesn't matter what you pick:
nd$year <- 2011L # L: integer to match original data
p <- predict(m, newdata = nd, se_fit = TRUE, re_form = NA)
ggplot(p, aes(depth_scaled, exp(est),
  ymin = exp(est - 1.96 * est_se), ymax = exp(est + 1.96 * est_se))) +
  geom_line() + geom_ribbon(alpha = 0.4)


# Plotting marginal effect of a spline ---------------------------------

m_gam <- sdmTMB(
 data = d, formula = density ~ 0 + as.factor(year) + s(depth_scaled, k = 5),
 time = "year", mesh = mesh, family = tweedie(link = "log")
)
if (require("visreg", quietly = TRUE)) {
  visreg::visreg(m_gam, "depth_scaled")
}


# or manually:
nd <- data.frame(depth_scaled =
  seq(min(d$depth_scaled), max(d$depth_scaled), length.out = 100))
nd$year <- 2011L
p <- predict(m_gam, newdata = nd, se_fit = TRUE, re_form = NA)
ggplot(p, aes(depth_scaled, exp(est),
  ymin = exp(est - 1.96 * est_se), ymax = exp(est + 1.96 * est_se))) +
  geom_line() + geom_ribbon(alpha = 0.4)


# Forecasting ----------------------------------------------------------
mesh <- make_mesh(d, c("X", "Y"), cutoff = 15)

unique(d$year)
#> [1] 2011 2013 2015 2017
m <- sdmTMB(
  data = d, formula = density ~ 1,
  spatiotemporal = "AR1", # using an AR1 to have something to forecast with
  extra_time = 2019L, # `L` for integer to match our data
  spatial = "off",
  time = "year", mesh = mesh, family = tweedie(link = "log")
)

# Add a year to our grid:
grid2019 <- qcs_grid_2011[qcs_grid_2011$year == max(qcs_grid_2011$year), ]
grid2019$year <- 2019L # `L` because `year` is an integer in the data
qcsgrid_forecast <- rbind(qcs_grid_2011, grid2019)

predictions <- predict(m, newdata = qcsgrid_forecast)
plot_map(predictions, exp(est)) +
  scale_fill_viridis_c(trans = "log10")

plot_map(predictions, epsilon_st) +
  scale_fill_gradient2()


# Estimating local trends ----------------------------------------------

d <- pcod
d$year_scaled <- as.numeric(scale(d$year))
mesh <- make_mesh(pcod, c("X", "Y"), cutoff = 25)
m <- sdmTMB(data = d, formula = density ~ depth_scaled + depth_scaled2,
  mesh = mesh, family = tweedie(link = "log"),
  spatial_varying = ~ 0 + year_scaled, time = "year", spatiotemporal = "off")
nd <- replicate_df(qcs_grid, "year", unique(pcod$year))
nd$year_scaled <- (nd$year - mean(d$year)) / sd(d$year)
p <- predict(m, newdata = nd)

plot_map(subset(p, year == 2003), zeta_s_year_scaled) + # pick any year
  ggtitle("Spatial slopes") +
  scale_fill_gradient2()


plot_map(p, est_rf) +
  ggtitle("Random field estimates") +
  scale_fill_gradient2()


plot_map(p, exp(est_non_rf)) +
  ggtitle("Prediction (fixed effects only)") +
  scale_fill_viridis_c(trans = "sqrt")


plot_map(p, exp(est)) +
  ggtitle("Prediction (fixed effects + all random effects)") +
  scale_fill_viridis_c(trans = "sqrt")

# }